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We demonstrate a method for differentiating tissue disease states using the intrinsic texture properties of speckle in
optical coherence tomography (OCT) images of normal and tumor tissues obtained in vivo. This approach fits a
gamma distribution function to the nonlog-compressed OCT image intensities, thus allowing differentiation of
normal and tumor tissues in an ME-180 human cervical cancer mouse xenograft model. Quantitative speckle in-
tensity distribution analysis thus shows promise for identifying tissue pathologies, with potential for early cancer
detection in vivo. © 2013 Optical Society of America
OCIS codes: 100.2960, 110.4500, 170.3880, 170.6935.

Cancer is a prevalent disease with terrible social and
economic consequences. Early detection of cancer is
crucial for timely intervention, which can lead to better
outcomes [1]. Imaging methods that use light-tissue inter-
actions have been shown to be sensitive to many subtle
diseased tissue alterations [2]. As such, optical coher-
ence tomography (OCT) is a promising technology that
may play a role in the differentiation between normal
and diseased tissue states in situ. It is particularly attrac-
tive for clinical application because of its high resolution,
subsurface imaging capability up to ∼2 mm in tissue and
fiber optic implementation that permits minimally inva-
sive access to many anatomically restricted areas. While
OCT’s impressive resolution is on the micrometer scale,
this is generally insufficient for direct visualization of
cellular organelles and cellular level changes, as these
are submicrometer in size. There is, however, some evi-
dence that image analysis of OCT speckle patterns can
extract additional tissue information [3,4]. Speckle in
OCT images results from the interference of backscat-
tered light from the subresolution scatterers in the tissue
being imaged. Speckle is known to give a good measure
of the underlying scatterers’ average properties, such as
size, shape, and distribution, without individually resolv-
ing them [3].
In this study, we use the local variation in OCT speckle

to obtain a measurement of the average changes in the
scatterer properties of the tissue being imaged. The met-
ric is then used to differentiate between normal and tu-
mor tissues in vivo. Specifically, the spatial variation of
OCT speckle intensities is quantified by fitting the un-
compressed OCT data to a gamma distribution function,
similar to methods used in previous high-frequency ultra-
sound tissue characterization studies and an OCT apop-
tosis study [5,6]. The pixel intensity distribution is
approximated by the gamma distribution using a simple
least squares optimization algorithm. The OCT speckle

variation is quantified through the fit parameters of this
distribution. To test this, in vivo OCT imaging was per-
formed on NCr nude mice with dorsal skin-fold transpar-
ent window chambers (WCs) to allow for direct imaging
of normal and solid tumor tissues [7]. Fluorescently la-
beled DsRed-Me180 cervical cancer xenografts were im-
planted in the mouse dorsal skin-fold WCs and monitored
using OCT starting 7 days after implantation. This animal
model permitted OCT imaging of tissues for up to 28 days
from tumor cell implantation (which usually coincides
with WC implantation). All animal studies were per-
formed in accordance with University Health Network
Animal Resource Center guidelines for the care and
use of laboratory animals.

The OCT system used in this study has been described
previously [8]. Briefly, it uses a 20 kHz Santec HSL2000-
HL laser source with center wavelength at 1320 nm and
bandwidth of 110 nm, resulting in an axial resolution of
7 μm in tissue. Using a 3 × 3Mach–Zender interferometer
with a semiconductor optical amplifier in the sample arm
and dual channel simultaneous detection, the system al-
lows for higher signal-to-noise ratio than conventional
systems. A heater and translation stage were used to po-
sition the ketamine and xylazine anesthetized mice under
the ball lens fiber of the OCT probe.

Representative B-mode OCT images were collected
from within the tumor area as well as surrounding nor-
mal tissues in the WC. The tumor contour was visible di-
rectly in the OCT images, but as a definitive measure, the
tumors were also imaged using a Leica MZ FLIII stereo-
microscope (Leica Microsystems GmbH, Wetzlar, Ger-
many) with a 560 nm excitation filter for localization
of the Texas Red glowing tumors. This allowed each
B-mode image to be categorized as being from a tissue
region that is either normal, contoured tumor or in-
between transition area. A region of interest (ROI)
was then selected within each image (normal or tumor
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tissue images), starting at a depth of 100 pixels below the
top of the coverslip of the WC. The standard depth was
chosen to minimize complicating effects due to signal at-
tenuation with depth. The ROI was 64 × 190 pixels, cor-
responding to a physical size of ∼210 μm × 630 μm,
chosen large enough to allow for good histogram statis-
tics. The OCT pixel intensity distribution in the ROI
(without log-compression) was then represented as a
histogram. Various methods of optimizing the binning
of the distribution, including fixed and “dynamic” binning
based on the Shimazaki method [9] were tested; fixed
binning was found to be optimal for histogram compari-
son of many images as this kept the relative histogram
amplitudes constant and comparable between images.
The histograms were then fitted using a least squares
method with the gamma distribution function [10]:

f �x; α; β� � 1
Γ�α� β

αxα−1e−βx: (1)

The parameters α, β are known as the shape and scale
parameter, respectively [5,10]. While individually they de-
scribe different aspects of the gamma distribution, the
“mean” of the distribution obtained via α∕β was used here
as a composite metric for the detection of tissue proper-
ties. As described by Tunis et al. [5] in the context of high
frequency ultrasound, the α∕β ratio is proportional to the
effective tissue scatterer number density, and can be re-
lated to cellular changes that affect the scattering proper-
ties of the tissue.
Representative histograms of nonlog-compressed OCT

signal intensities are shown in Fig. 1 for a normal and a
tumor region, showing clear differences in the distribu-
tion of speckle intensities and the α∕β mean of the
corresponding gamma fits varying accordingly. The
goodness of fit was typically R2 ∼ 0.985 (range 0.950–
0.990 for several hundred ROIs), demonstrating excellent
quantitative description of the data. Figure 2(a) shows a
representative B-scan image that encompasses the tran-
sition from a normal to a tumor region in the WC, while
Fig. 2(b) shows the variation of the mean α∕β parameter
across the normal-tumor boundary. This was obtained
based on a sliding box algorithm, similar to the one used
for fractal box counting [11]. The algorithm slides a box,
equal in size to the ROI of 64 × 190 pixels, from the left to
the right of the image, calculating the mean α∕β parameter

in the ROI at every step. In the calculations of the data
shown, the step size was 19 pixels (90% overlap of con-
secutive boxes) and the sampled area was at a depth of
120 pixels from the top of the image (i.e., ∼100 pixels
from top of the WC). The transition from normal to tumor
regions is well quantified by the decrease in the α∕β mean
of the gamma distribution fits. Since the OCT image being
analyzed is a transition region between normal and tumor
tissue, the range of values of the α∕β mean falls between
the extremes of purely normal and purely tumor regions
in Fig. 1. Similarly, when comparing images from differ-
ent tissue regions in the WC, corresponding to both
normal and tumor tissue, the strong correlation of the
α∕β mean parameter with disease state is also evident.
Figure 3(a) shows the separation between normal, tu-
mor, and “transition” regions (total of 52 images from
25 normal, 25 tumor, and 2 transition regions). The α ver-
sus β plot clearly classifies the tumor and normal tissue

Fig. 1. (Color online) Histograms of the OCT image pixel in-
tensity distribution in a 64 × 190 pixel (∼210 μm × 630 μm) ROI
region for (a) normal and (b) Me180 tumor tissue 17 days after
tumor implantation. The mean α∕β parameter was found by fit-
ting the distribution with the gamma function [Eq. (1)], with the
line of fit shown in blue. The mean α∕β parameter values were
found to be 9.08 × 10−4 and 3.94 × 10−4 for the normal and tumor
tissue, respectively.

Fig. 2. (Color online) (a) B-mode image of normal to tumor
tissue (left to right) transition region of a mouse 17 days post-
injection of tumor cells. The 64 × 190 pixel ROI box is blue and
its sliding region is shown by the white lines. The image field of
view is 1.32 mm × 3 mm (depth × width). (b) The variation of
the mean α∕β parameter as a function of the center of the sliding
ROI in (a).

Fig. 3. (Color online) (a) Plot of the α∕β ratio from ROIs of 52
images of varying origin: 25 normal, 25 tumor, and 2 transition
regions of a mouse 17 days postinjection of tumor cells. The
ROI used for the image analysis was 64 × 190 pixels and at a
depth of 100 pixels below the top of the WC, as before.
(b) Bar plot of the average α∕β mean parameter from normal
and tumor tissue. The error bars are �1 SD from the mean.
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into two groups, while the transition regions of unknown/
mixed tissue pathology fall somewhere in between, being
similar to the normal tissue.
In Fig. 3(b) the average α∕β mean parameter value is

shown for sets of normal and tumor images. The result-
ant differentiation is excellent: using an unpaired two-
tailed t-test it was determined that the difference be-
tween the two groups was statistically significant at a
95% confidence level with a p-value of ∼10−20. The varia-
tion within a given pathology is quite small, as shown by
the modest size of the error bars (� standard deviation).
This suggests that the metric detects details of tissue mi-
crostructural variation that are finer than differences due
to different tissue types, and is thus sensitive to subtle
features of tissue heterogeneity. This quantifiable hetero-
geneity effect is considerably smaller than the tumor–
normal tissue differences, and as such does not confound
the differentiation of these tissue types.
Since the methodology enables the detection of small

variations in tissue heterogeneity, the described speckle
analysis technique could also be used for the detection of
changes within a tissue type. For example, a common
cancer treatment is radiation therapy. While the detailed
radiobiology of tumors is still not completely understood
[12], radiation-induced cell death, cellular structural
changes, and connective tissue alterations may result
in changes of the optical properties of tissues. As such,
and based on the current findings, the response of tumors
to radiation may potentially be monitored using the OCT
speckle analysis algorithm described herein. Since OCT
is noninvasive, and the mouse WC allows for focal irra-
diation of the tumor, the analysis pipeline could provide a
valuable preclinical tool for the study of radiation
response dynamics in solid tumors and adjacent normal
tissues longitudinally and in vivo. In addition to funda-
mental insights, noninvasive detection of early radiobio-
logical tissue alterations could be performed clinically
using fiber optic technologies and thus used to guide
adaptive radiation treatment delivery. Since clinical as-
sessment of radiation response currently incurs delays
of weeks to months, our proposed methodology could
potentially enable earlier detection (∼2–3 weeks) of tis-
sue changes and corresponding treatment adjustments.
While the presented method was applied to 2D B-mode

images, its use can be easily extended to the analysis of
3D datasets. By analyzing 3D data, the method can allow
for the delineation of tumors and the sensitive volumetric
mapping of tissue property variations.
A drawback of the current implementation of

the method is its use of a relatively large ROI of
210 μm × 630 μm, as selected to get suitable gamma fits
and statistics, which results in some spatial blurring and
averaging over potentially heterogeneous tissue regions.
Further systematic studies of ROI size/shape that will im-
prove the method’s spatial resolution and minimize aver-
aging while still yielding accurate fits will likely yield
better results. Such studies are ongoing. The α∕β mean
parameter shows good differentiation between normal
and tumor tissue types, however it is not clear exactly
what biological events are causing the changes in the
speckle signal and the variation in intensity distributions.
Correlative studies of tissue histopathology and

two-photon fluorescence microscopy will be used to link
variations in the α∕β mean parameter to tissue- and cel-
lular-level changes in the tissue. While the preliminary
results presented here demonstrate promise for differen-
tiating tissue types, additional metrics may be necessary
to sample the subtle and complex spectrum of tumor
tissue biology and response to treatments. With a multi-
parametric approach, the correlation of biological events
to a biophysical metric parameter space may become
realistic and useful. Further, the imaging optics (i.e.,
the NA, illumination geometry, working distance) may in-
fluence the performance of the algorithm, effects yet to
be studied. Preliminary results from a different OCT
system indicate comparable algorithm performance in
differentiating normal from tumor tissue (data not
shown), suggesting that the methodology is fairly robust.

In summary, we describe a novel quantitative OCT
speckle analysis algorithm based on gamma distribution
fits. We demonstrate its performance in differentiating
between normal and tumor tissues in vivo in a WC
mouse xenograft setting. The method has the potential
for detecting subtle tissue alterations caused by disease
development (e.g., cancer progression), or stemming
from minimally invasive treatments (e.g., radiation
therapy). In the former context, early tumor detection
and staging/margin delineation may be possible; in the
latter scenario, treatment feedback/personalization are
attractive options. Several avenues for further studies
and methodology improvement have also been outlined.
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